

Keywords: Simulation, Apprenticeship Learning, Sensing.
Robot: Modified Drifting Mazda RX7 RC Car.
Abstract—The goal of this project is to develop a controller

for drifting an RC car through a pre-specified course. For the
early stages of this problem, we restricted the course to 90-
degree turns. The 4WD car has limited turning radius and low
friction rear tires, so it must drift in order to turn around tight
corners. The car is localized using sonar, wheel encoder and
gyroscope, and it uses this localization data to access spatially-
indexed control policies, both open- and closed-loop.

I. INTRODUCTION
ONTROL algorithms in robotic cars often
neglect slipping due to its unpredictable

nature. Slipping depends on the road surface, and
if speeds are kept low enough while turning, no
slipping will occur. This project uses slipping for
tight turns and handles it by switching between
open- and closed-loop driving policies. The
Stanford Autonomous Helicopter Project([1],[2]),
copes with a similar problem by building a
simulator, and actual odometry data to iteratively
improve it (in the style of discovering the state
space of an MDP). It uses demonstrations to
estimate ideal trajectories, and improves this via
local search. We hope to use a simulator to capture
the general behavior of a slipping car, and use it as
a tool for creating control regimes. A challenging
aspect of this approach was to building a simulator
that accurately depicts the essence of sliding
behavior. Our access to odometry data was
limited, so comparisons with reality were difficult.
The method of simulating slipping was quite
arbitrary, thus during this semester, we never got
the simulator to a point where we could apply it to
the real car. We did however greatly advance the
state of the simulator and it should prove
invaluable for future research. We developed the
platform as we went, so unfortunately we made
several breakthroughs in sensing and control that

Samuel Henry is a Computer Science MEng student at Cornell
University (netID: sth56).

Andrew Perrault is a junior Computer Science undergraduate student at
Cornell University (netID: arp86).

were too late to investigate thoroughly before the
paper deadline.
 For our non-simulator approach, we learned
from expert demonstrations (as in [2]) and
attempted to generalize it for a problem space with
two main degrees of freedom: velocity going into
a turn and battery level (to a limited extent). We
used manual control on the car to make it drift 90
degrees at different speeds and different battery
levels. Using these recorded runs we attempted to
extract an ideal regime of policies. We mixed
open-loop controllers for turns with simple closed-
loop controllers for straights in order to achieve a
level of autonomous driving. Towards the end of
the development period, with improved sensing
data, we developed what we believe to be a
closed-loop controller for drifting – it is described,
but we weren’t able to fully test/implement it.
 Four relevant prior results are [1],[2],[3] and [4].
[3] describes how to convert a time-indexed policy
into a space-indexed one and how to deal with
state transitions by linearizing the dynamics
around them. This approach seems to require a
higher degree of sophistication in odometry than
we had access to, as well as a higher degree of
control accuracy. [1] describes how creating the
simulator and learning a trick were combined in an
iterative test process, which also is odometry
intensive and thus out of reach. [2] describes how
imitation learning was used in conjunction with
the simulator to learn from many expert
performances. [4] describes a very similar
problem to ours, but the algorithmic focus of the
paper is in transitioning between open- and
closed-loop controllers in a more sophisticated and
detailed manner than our implementation.

Our simulation approach uses the Open
Dynamics Engine, models the car simplistically,
focuses on capturing the drift motion and roughly
estimates other dynamics.

Autonomous RC Car Drifting
Samuel Henry and Andrew Perrault

C

II. HARDWARE
A. Base RC Car Specification
The car has a wheelbase of around 25 cm and an

axle length of around 10 cm. The front wheels
have rubber tires and thus grip much better than
the smooth, plastic rear wheels (this is the primary
cause of the drifting). The car is 4WD.

B. Sonar
The wide cone means the sonar is likely to

detect closer objects that aren’t directly in front of
it, rather than farther ones directly ahead of it.
This can be problematic in threshold detection
because the sonar will sometimes pickup the edges
of the side walls resulting in spikes in the data.
Also, the sonar will not work at too much of an
oblique angle to a surface – around 45 degrees is
the maximum. The sonar has an update rate of 40
Hz and a maximum range of around 3.5 meters.

C. Batteries
We used three Tyco RC batteries. Deciding

when to switch batteries was done pretty
unscientifically. The batteries showed different
levels of wear, which created problems with
standardization between batteries.

D. Wheel Encoder
Hand-constructed wheel encoder with

originally, 5 black, 5 white regions, and then
updated to 10 black, 10 white regions for better
resolution. The error in velocity measurement is
the width of a region divided by the update time
(30 ms for this sensor), in our case about .33 m/s.
Could be reduced by slowing the update rate, but
this sensor is definitely the least accurate for our
purposes.

E. Communication
XBee wireless controller. We had some

problems with dropped packets, which is a major
problem in our original setup with 10 Hz control
instructions. The car returned sensor data every 30
ms in a comma-separated values format. This was
a serious problem in observing certain quantities,
and so we created a precise controller where
instructions occur at 1000 Hz on the
microcontroller of the car itself. With this setup,

we can send data updates at 200 Hz.

F. Gyroscope
+/- 300 degs/sec gyroscope. The gyroscope has

a high level of standing noise due to its low
resolution. However, the car turns 180 degrees in
less than a second while drifting, so it is
necessary.

III. SIMULATOR
A. Reasons for Simulation
The use of a simulator allows for the complex

physics of drifting to be modeled. This is
particularly important for this project because the
commands or rules necessary perform drifts are
difficult and time consuming to construct.
Multiple turns, especially in succession are near
impossible to formulate due to the complex
physics necessary of drifting.

The simulator’s main purpose is to provide a
learning environment for machine learning
algorithms. Using a simulator is much faster than
learning with the actual robot, and because of the
complexities of drifting, mathematical models are
difficult to formulate. It is essential that the
simulation accurately reflect reality, since the
physical robot will execute the rules or commands
learned.

At the core of the simulator is a physics
simulation. The physics engine used is pyODE, a
python implementation of the Open Dynamics
Engine, an open source physics engine
(http://pyode.sourceforge.net/). pyODE provides
the functionality for the primary physics equations
and integrators used in simulation. It also provides
methods for collision detection and response.
Using pyODE at its core we built a framework
that allows for minimal understanding of the
underlying system and ease of use. This allows for
future work to focus solely on learning algorithms
without spending time understanding or modifying
the simulator. To achieve this, the existing code-
base was expanded, documented, and converted to
an object oriented design.

B. Implementation
Previous work had been done with simulator and

laid the foundation for our simulator
implementation. The rendering, track structure and
methods, and a basic simulation loop were
completed. The simulation had to be hardcoded
into individual files in order to execute different
commands or use different tracks. We created a
new class structure and strived to create an object
oriented and well-documented simulator that
would be easy to use. Classes with constructors,
state information, accessor and mutator methods
have been created and the code has been well
documented allowing for quick understanding of
what methods are available and the functionality
they provide. In order to aid improvements that
may need to be made to the simulator global
constants are used rather than magic numbers. The
pre-existing code base was also modified to abide
by these standards.

At the heart of the new design is the simulator
class. This is the central class where the main
simulation loop is executed. It allows for easy
swapping between different tracks and sets of
commands or command algorithms. In order to
create a simulator, you simply specify the track
and the command algorithm that you would like to
use. To extend the functionality of the simulator
several options, such as command or state logging,
disabling rendering, and a few others may be
specified.

Since algorithms that generate commands are
vital to future progress the simulator allows them
to be easily swapped by passing in different
instance of the driver class. The driver class issues
commands, and is the only class that should
require modification for different planning and
control algorithms. During each iteration
simulation loop the simulator asks the driver for a
command, and the driver issues the command. In
order to make a decision, the driver has access to
information regarding the global state of the
system via the track and local state of the car,
using these 2 objects the entire state of the system
is defined, and intelligent planning and control
systems can be implemented.

C. Car Movement
One of the major design decisions of the

simulator was how to simulate the movement of
the car. Several options were considered until we
decided that rotation the wheels to simulate linear
acceleration and turning the wheels to provide
turning was the best option. Below are methods
considered for motion and their consequences:

Perhaps the simplest method to simulate motion
is to set the velocity of the car. This is allows for
any state of the car to be easily manipulated.
However setting speeds immediately is very
unstable due to the way in which the simulation is
integrated. By setting velocities, energy is added
or taken away from the physics system. Since the
system is based on physics equations that assume
a conservation of energy, creating energy from
nothing or destroying energy causes the equations
to breakdown, and the simulation quickly
degenerates. The same can be said for setting the
orientation of the car instantly. Angular
momentum follows similar laws as linear
momentum, so instability quickly creeps in.
Setting the orientation directly also fails to capture
the physics of the drift and the interactions
between the tires and the ground, which is the
primary purpose of the simulation.

Another idea was to apply force to the car.
Unlike setting velocities, applying a force does not
cause instabilities in the physics system.
Application of force worked well for linear
acceleration, but by applying forces to turn the car
the interactions between the surface and the tires is
not modeled, so the system does not capture
reality.

The method implemented, and the most
reflective of reality is to have the tires move the
car. Torques are applied to the tires and due to
friction between the tire and the ground the car is
propelled forward. Turning is achieved by turning
the front tires, which consequently changes the
orientation of the car. This system allows for
intuitive use and manages to capture the physical
properties of drifting. This also allows for actions
to be more easily mapped to the actual robot itself.
Actions learned in the simulator can be easily
defined as ‘apply throttle’ and ‘turn the wheels’
and correspond directly to actions taken by the
robot. This allow for minimal translation between

simulation and reality.

D. Drifting
The simulator has the ability to simulate drifting.

This is achieved by using different friction
coefficients for forces perpendicular to wheel
rotation and forces parallel to rotation. Another
key to simulating drift is setting different values of
slip for the front and back tires. When the back
tires can slip more easily drifting is easily
achieved. We found that it was best to prevent the
front tires from slipping at all, and allow the back
to slip very easily. This is not entirely separate
from reality, as the robot has rubber treads on the
front tires, which provide a lot of grip, and the rear
are smooth plastic which easily slip. Both of these
conditions are applied during collision response in
the simulator

E. Interfacing with the Robot
The robot can easily execute commands learned

during simulation. As the simulation takes place,
the commands being executed may be logged.
These commands are saved to a text file and
specify the throttle, direction (backward or
forward) and the angle of the wheels. The
commands are logged at the same pace as they are
executed by the robot and allow the robot to parse
the list as it runs.

While running the robot can collect and log
sensor data. This data is easily incorporated into
the simulator via file readers and interpreters. Data
from front sonar or line detectors can be easily
converted to linear acceleration using methods we
created. More recently data collected from the
robot has grown more robust and allows for
velocities to be more directly determined from
odometry on the wheels.

Both of these methods of interfacing with the
robot are particularly useful when tuning
simulation parameters to match reality.

F. Approximating Reality
The simulator must approximate reality in order

to be useful. The most basic implementation of
this is to match the physical characteristics of the
car in the simulation. The car is approximated by a
box and 4-cylinders. The box has the same scale

dimensions (length, width, height) of the body of
the physical car. Each cylinder corresponds to a
wheel and the dimensions of the wheels (radius,
width) also match the physical car. Furthermore
different grips between tires is approximated by
applying more torque to the front tires than the
back tires. Perpendicular grip is approximated by
allowing the back tires to slip and not allowing the
front tires to slip (as explained in the drift section).

The acceleration of the car must match reality,
and to achieve this, I use data collected from both
the sensors on the robot and from the state of the
car in simulation. Using gradient descent I adjust
an acceleration parameter until the two data sets
match to a specified degree of precision. This
process begins by creating a set of commands,
which easily can be captured by running the
simulator and logging commands, or by manually
coding commands in the correct format. Since the
goal is to match linear acceleration, the commands
consist of simply accelerating forward for 1
second using different levels of throttle. The
throttle was divided into ten levels, ranging from
10 percent of throttle to 100 percent of throttle
with 10 percent intervals separating each level.
The result is 10 sets of commands each 1 second
in length.

The physical car executes these commands
while it collects data. That data is stored and linear
velocity is approximated using either the line
detectors or the front sonar. For these experiments
front sonar was the primary sensor used. The
sensor data is converted to velocity over time, and
is used as the data to fit by the simulator.

The simulator then iteratively executes the same
set of commands and adjusts, as a function of the
error the parameter that controls linear
acceleration. After many iterations the simulator
matches the real data. This process is automated,
and is implemented in the SimulatorAdjuster
class.

G. The “Flying Off” Problem
Using the wheels to propel that car works well,

but it presented a unique problem, the car tended
to fly off the track. This behavior began as a front
wheelie and continued as the car flipped wildly

through the air.
The cause of this is most likely numerical error

created by the large forces of friction between the
tires and the surface. This friction is so great that
the car gains upward momentum and then due to
imprecise integration the error explodes. The
problem can be eliminated by lowering either the
tire or track friction. Lowering friction is not a
solution and causes a serious problem. Friction is
the force responsible for acceleration and less
friction therefore causes less acceleration. To
ensure this problem would not occur, the friction
must be lowered to the point where the car
accelerates much slower than reality. In fact it
accelerates so slowly that the simulation becomes
unusable. Another idea was to increase the weight
of the car. Since more weight requires more force
to push the car upward, increased weight reduced
the 'flying off' effect but did not solve the
problem. More weight suffers from the same
disadvantages of decreased friction; more weight
also causes the car to accelerate slower. To ensure
the car would never 'fly off' the weight needed to
be increased to the point where acceleration was
so slow it rendered the simulation useless.
Increased weight also caused a problem with
collision response. The car would occasionally
sink through the floor. This is a result of numerical
error during the calculation of collision forces
between the tires and the ground.

 Another attempt at fixing this effect was to
lower the center of mass of the car. This did
indeed reduce the occurrence of the effect, and
also reduced the occurrence of the car flipping
while turning. When performing tight turns at high
speeds the centrifugal force can cause the car to
flip. This is an acceptable reaction, but the original
car model flipped too frequently. To create a
lower center of mass I simply flattened the body
of the car and lowered it with respect to the
wheels.

 When watching the car 'fly off' the car would
first do a wheelie and then go in the air. This
seemed to indicate that the back tires are doing the
majority of the gripping causing the 'flying off'
effect to occur. To solve this I lowered the friction
of the back tires. This didn't seem to help, even

when turning off any torque to the back tires or
removing all friction from the back tires the effect
continued. Different grips are still used in the
simulation, and as explained in the drifting
section, are essential to accomplishing drift.

 Another possible cause of the ‘flying off’ effect
was that the tires were colliding with the car body
and the simulator was therefore applying collision
forces to prevent interpenetration. Since the
wheels are connected to the body any penalty
forces would affect the body of the car as well as
the wheels. Penalty forces tend to be very strong,
and can cause instabilities in simulation,
especially when time steps are large. After
preventing these collisions by modifying the
collision response code the ‘flying off’ effect
continues and we ruled this out as the cause.

 After trying the solutions explained above I
switched my attention away from the car model
towards the global simulation. During simulation,
integration is approximated using time steps. If
time step steps become infinitely small the
integration is exact, but the approximation
becomes increasingly inaccurate as the size of the
time steps increase. pyODE uses a semi-implicit
integrator which is more sensitive to this problem
that other integration methods. By decreasing the
time step size I hoped to eliminate the problem.
Unfortunately even with very small time steps the
‘flying off’ effect continued. I believe that if time
steps were small enough the flying off effect
would not occur, but the simulation would become
so slow that it would become unusable, and since
the main purpose of the simulator is to train
algorithms faster than the actual robot, speed is
important and timesteps could not be reduced to
an adequate size.

 The last attempts prevent the car from moving
in the y-direction. This can be achieved in two
ways, pin the car the X-Z plane or sandwich the
car in between two planes. Sandwiching the car
between 2 planes is achieved by creating an
invisible plane just above the car model. Any
movement in the y-direction causes the car to
collide with the overhead plane and therefore the
movement will be stopped using collision forces.
After implementing this, I found it to be just as

buggy and problematic as the original 'flying off'
problem. The collision forces can quickly spiral
out of control as the car bounces between the two
planes and due to numerical error it would
eventually pop through one of the planes and the
simulation would therefore be broken.

 The final attempt and current solution is to pin
the car to the X-Z plane. To achieve this I set any
angular or linear velocity in the positive y-
direction to zero before integration occurs. I also
set any forces pushing in the y-direction to 0. This
solves the problem and the car can accelerate as
fast as necessary. The car will sometimes still go
in the y-direction, due to numerical error and
collision response, but since acceleration and
velocity is only stopped in the positive y-direction,
the car quickly falls back to the ground. Also any
motion in the y-direction tends to be fairly small,
since the time steps are small. Pinning the car to
the X-Z plane was the final solution to the ‘flying
off’ effect and last component necessary to get the
simulation in working order.

H. Reinforcement Learning
Since the main purpose of the simulator is for

learning, particularly reinforcement learning, I
created a rudimentary reinforcement learner. The
learner works, and specifies how future teams
might go about implementing a more robust,
effective and efficient learner.

The reinforcement learner uses discrete states
that consist of a four-tuple: x-position, y position,
orientation and speed. Actions are defined as a
tuples, consisting of throttle and the wheel angle.
The actions correspond to actions that can be sent
to the actual robot. Since the simulation is
deterministic, transition probabilities are always 1,
and do not need to be estimated. Transitions are
instead calculated using a parallel simulator that
determines the state of the car after an action is
made.

The reinforcement learner uses the driver class
to determine the best policy on the fly, so as the
car moves around, the optimal path is determined
based on its set of actions and learned state values.
Rewards are always negative to encourage a
speedy path to the goal. High penalties are given

when the car drives off the edge, and the only
positive reward is given at the goal state.
Currently the goal state is just a position on the
track, speed and orientation do not matter.

One of the problems that I came across was that
because the transition probabilities are
deterministic exploration was limited. Once a
working path was found the car would stick to it
and the learning would become stagnant. In order
to encourage more exploration of the state space I
added a random element, by causes a random
action to occasionally occur.

IV. ALGORITHMIC APPROACH
A. Apprenticeship Learning
Initially, our approach was to mix a closed-loop

straightening controller with open-loop controllers
for the turns. What ended up happening was that
the open-loop controller would give non-
deterministic results, even on a 1000 Hz
controller. We attribute this to the wild
fluctuations in battery level observed in the linear
and angular velocities from run to run, as well as
probably the unevenness of the carpet surface. So,
we upgraded our hardware to allow for a closed-
loop turn controller. The most reliable way we
found to do this, after much experimentation, is to
run a large number of open-loop trials with the
same controller, and observe their behavior.
Specifically, for a 90-degree right turn, we aim to
perform the drift by turning the wheels right and
setting the throttle high to initiate the drift and
then reversing the wheels and killing the throttle to
stop the drift. What we measured was the amount
of time and angle covered by the spinning car
when the throttle is killed and the wheels are
reversed at different angular velocities. All of the
trials of the same open-loop controller behave
mostly the same way, so we can informally
control for other factors – all except for the entry
speed into the turn, which we had to break the
policies into regimes for.

The relationship between angular velocity and
stopping time is shown below for one linear
velocity region. The relationship seemed linear to
us, so we applied linear regression.

Since we applied different regressions to

different regions of the data, we are performing
local regression. If we hard-code a controller that
estimates how far it will turn if it were to stop at
each timestep, we can perform turns with low
error (see our video, in which four turns are linked
without straightening). Another approach we
could use is to keep track of the number of degrees
turned each time, and for a box-like course, we
could then correct for error in a previous turn by
setting a different target for the next one.

B. Straightening Controller
We created a very basic PID closed-loop

straightening controller, using only sonar. This
was meant to take control of the car between turns.
Since turning proved so difficult, we spent most of
our time working on it, rather than the
straightening controller – which would have been
a matter of applying known techniques and tuning
them. For example, we could have written a
Kalman filter for the car’s angle with respect to
the side wall, as measured by sonar, gyro and
using the below control responses.

C. Data
We did several successful experiments in

measuring the behavior of the car. Below is the
angular turning rate at different wheel angles in a
non-slipping regime. This was used in the closed
controller for straightening (reducing angle error
to zero) and could be applied to a Kalman filter for
angle or position.

We also measured the amount of energy

required to drift by doing an experiment where we
drive the car directly forward, and then turn with
no throttle. It is not practical to drive the car on a
course this way because it is too fast and
uncontrollable, but it shows the energy threshold
for drifting quite clearly.

When we gained access to data at a very good

update rate, we were able to get much better idea
of the physics of a drifting turn. During this time,
we were using a strategy of turning the wheels,
applying a throttle to spin the car, and then
reversing the wheels to stop the drift. We hoped
to determine the time required to go from any
angular velocity to an angular velocity of zero.
Thus creating a controller that calculates when to
stop the car during a 90-degree turn based on the
current angle and angular velocity.

V. EXTENSIONS
A. Improved Odometry and Sensing
Of the papers we surveyed, our robot was the

weakest in terms of odometry. All others used
GPS, often with high precision, to gain access to
absolute position data. In our case, GPS would
have greatly simplified the sensing problem.
Additionally we could have used a greater degree
of environmental specification or algorithm
sophistication to get a similar result. For example,
we could have implemented a particle filter
(although it would not be easy because of the
degree of isometry in our testing environment) or
a Kalman filter that integrated knowledge of
control response. There are probably other
techniques that could be implemented as well, but
any of them could have contributed to a more
sophisticated apprenticeship learning approach (as
in [4]) or used to train the simulator (as in [1]).

Odometry also limited our approaches to more
sophisticated turning problems; for example, a
slowly-curving turn would be difficult to run in
our current setup because we would not be able to
detect when the turn began, as we would need to
see some wall perpendicular to our current
heading to detect the onset of a turn.

These problems could also be addressed with
improved sensing, with lasers for a high-power
solution, or perhaps even a single camera. Sonar,
in our current setup, suffers from large spikes –
which have to be filtered out, causing a delay in
threshold detection. Sonar also has a relatively low
max range, around 3.5 meters. These two
problems, compounded with a low instruction rate
(see below), make it difficult to drive quickly and
make quick decisions.

B. Robustness
We encountered several problems of robustness

in our approach. One problem was the battery. We
tried to avoid modeling to the battery because of
the lack of interesting results to be observed in
that area. We used results that were battery
independent, and also used the operation on a
full battery as the canonical battery level. As
detailed in the battery section this had several
undesirable consequences. There were differences

in the degradation of our batteries as well. This
made some theoretical methods more difficult to
apply, and it also meant that the compromises we
made because of the battery (a fair degree of hand
tuning) made our open- and closed-loop
controllers less robust.

Another area of difficulty was the slow
instruction update rate (10 Hz). Most drift turns
take less than a second, with the crucial
information of when to stop the drift and let the
car slide requiring high precision. Our slow update
rate made adding a closed-loop component to our
drift controller difficult because of the large
amount of error incurred as a result of a bad
reading or dropped packet. In order to eliminate
this problem, we built software to run instructions
at 1000 Hz on the microcontroller and send data
back at 200 Hz.

C. True Expert Driver
Our ideal runs were performed through the

keyboard controller by our team, none of which
had experience drifting remote control cars. It
would be interesting to see how someone who is a
true expert could drive to minimize the error of the
open-loop components. For example, we did little
throttle management during the turn. It’s possible
that better control actions could allow for more
error in input error.

D. Transitioning Between Open and Closed
Loop Controllers
We took a very simplistic approach to

transitioning between open- and closed-loop
controllers – some kind of odometry condition
usually. [4] presents an interesting method of
probabilistic transitioning between open- and
closed-loop controllers.

VI. CONCLUSION
We had to make many compromises in

approaching our goals for the project, but we still
believe that many of the problems we encounter
are solvable. Our project is difficult in several of
the main areas of robotics, but particularly, we did
not expect the degree of the problems we
encountered in sensing and communication. We
were also building the platform as we went, which

was quite time-consuming. Although we invested
a very large amount of time on the project during
the semester, it wasn’t until the end where we
thought we might have some chance of solving the
problem satisfactorily (due to the wheel encoder
and gyroscope – new sensors, and the improved
communication method).

ACKNOWLEDGMENT
Jonathan Diamond
Nan Rong

REFERENCES
[1] Learning for Control from Multiple Demonstrations, Adam Coates,

Pieter Abbeel, and Andrew Y. Ng. ICML, 2008.
[2] Autonomous Autorotation of an RC Helicopter, Pieter Abbeel, Adam

Coates, Timothy Hunter, and Andrew Y. Ng. In International
Symposium on Robotics, 2008

[3] Space-indexed Dynamic Programming: Learning to Follow
Trajectories. J. Zico Kolter, Adam Coates, Andrew Y. Ng, Yi Gu, and
Charles DuHadway. ICML, 2008.

[4] A Probabilistic Approach to Mixed Open-loop and Closed-loop
Control, with Application to Extreme Autonomous Driving. J. Zico
Kolter, Christian Plagemann, David T. Jackson, Andrew Y. Ng, and
Sebastian Thrun. To appear in Proceedings of the International
Conference on Robotics and Automation (ICRA), 2010.

