
  

  

Keywords: Simulation, Apprenticeship Learning, Sensing. 
Robot: Modified Drifting Mazda RX7 RC Car. 
Abstract—The goal of this project is to develop a controller 

for drifting an RC car through a pre-specified course. For the 
early stages of this problem, we restricted the course to 90-
degree turns. The 4WD car has limited turning radius and low 
friction rear tires, so it must drift in order to turn around tight 
corners. The car is localized using sonar, wheel encoder and 
gyroscope, and it uses this localization data to access spatially-
indexed control policies, both open- and closed-loop. 

I. INTRODUCTION 
ONTROL algorithms in robotic cars often 
neglect slipping due to its unpredictable 

nature. Slipping depends on the road surface, and 
if speeds are kept low enough while turning, no 
slipping will occur. This project uses slipping for 
tight turns and handles it by switching between 
open- and closed-loop driving policies. The 
Stanford Autonomous Helicopter Project([1],[2]), 
copes with a similar problem by building a 
simulator, and actual odometry data to iteratively 
improve it (in the style of discovering the state 
space of an MDP). It uses demonstrations to 
estimate ideal trajectories, and improves this via 
local search. We hope to use a simulator to capture 
the general behavior of a slipping car, and use it as 
a tool for creating control regimes. A challenging 
aspect of this approach was to building a simulator 
that accurately depicts the essence of sliding 
behavior. Our access to odometry data was 
limited, so comparisons with reality were difficult.  
The method of simulating slipping was quite 
arbitrary, thus during this semester, we never got 
the simulator to a point where we could apply it to 
the real car.  We did however greatly advance the 
state of the simulator and it should prove 
invaluable for future research. We developed the 
platform as we went, so unfortunately we made 
several breakthroughs in sensing and control that 
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were too late to investigate thoroughly before the 
paper deadline. 
 For our non-simulator approach, we learned 
from expert demonstrations (as in [2]) and 
attempted to generalize it for a problem space with 
two main degrees of freedom: velocity going into 
a turn and battery level (to a limited extent). We 
used manual control on the car to make it drift 90 
degrees at different speeds and different battery 
levels. Using these recorded runs we attempted to 
extract an ideal regime of policies. We mixed 
open-loop controllers for turns with simple closed-
loop controllers for straights in order to achieve a 
level of autonomous driving. Towards the end of 
the development period, with improved sensing 
data, we developed what we believe to be a 
closed-loop controller for drifting – it is described, 
but we weren’t able to fully test/implement it. 
 Four relevant prior results are [1],[2],[3] and [4]. 
[3] describes how to convert a time-indexed policy 
into a space-indexed one and how to deal with 
state transitions by linearizing the dynamics 
around them. This approach seems to require a 
higher degree of sophistication in odometry than 
we had access to, as well as a higher degree of 
control accuracy. [1] describes how creating the 
simulator and learning a trick were combined in an 
iterative test process, which also is odometry 
intensive and thus out of reach. [2] describes how 
imitation learning was used in conjunction with 
the simulator to learn from many expert 
performances. [4] describes a very similar 
problem to ours, but the algorithmic focus of the 
paper is in transitioning between open- and 
closed-loop controllers in a more sophisticated and 
detailed manner than our implementation. 

Our simulation approach uses the Open 
Dynamics Engine, models the car simplistically, 
focuses on capturing the drift motion and roughly 
estimates other dynamics.  
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II. HARDWARE 
A. Base RC Car Specification 
The car has a wheelbase of around 25 cm and an 

axle length of around 10 cm.  The front wheels 
have rubber tires and thus grip much better than 
the smooth, plastic rear wheels (this is the primary 
cause of the drifting).  The car is 4WD. 

B. Sonar 
The wide cone means the sonar is likely to 

detect closer objects that aren’t directly in front of 
it, rather than farther ones directly ahead of it. 
This can be problematic in threshold detection 
because the sonar will sometimes pickup the edges 
of the side walls resulting in spikes in the data. 
Also, the sonar will not work at too much of an 
oblique angle to a surface – around 45 degrees is 
the maximum.  The sonar has an update rate of 40 
Hz and a maximum range of around 3.5 meters. 

C. Batteries 
We used three Tyco RC batteries. Deciding 

when to switch batteries was done pretty 
unscientifically. The batteries showed different 
levels of wear, which created problems with 
standardization between batteries. 

D. Wheel Encoder 
Hand-constructed wheel encoder with 

originally, 5 black, 5 white regions, and then 
updated to 10 black, 10 white regions for better 
resolution.  The error in velocity measurement is 
the width of a region divided by the update time 
(30 ms for this sensor), in our case about .33 m/s.  
Could be reduced by slowing the update rate, but 
this sensor is definitely the least accurate for our 
purposes. 

E. Communication 
XBee wireless controller. We had some 

problems with dropped packets, which is a major 
problem in our original setup with 10 Hz control 
instructions. The car returned sensor data every 30 
ms in a comma-separated values format.  This was 
a serious problem in observing certain quantities, 
and so we created a precise controller where 
instructions occur at 1000 Hz on the 
microcontroller of the car itself.  With this setup, 

we can send data updates at 200 Hz. 

F. Gyroscope 
+/- 300 degs/sec gyroscope. The gyroscope has 

a high level of standing noise due to its low 
resolution. However, the car turns 180 degrees in 
less than a second while drifting, so it is 
necessary. 

III. SIMULATOR 
A. Reasons for Simulation 
The use of a simulator allows for the complex 

physics of drifting to be modeled. This is 
particularly important for this project because the 
commands or rules necessary perform drifts are 
difficult and time consuming to construct. 
Multiple turns, especially in succession are near 
impossible to formulate due to the complex 
physics necessary of drifting.  

The simulator’s main purpose is to provide a 
learning environment for machine learning 
algorithms. Using a simulator is much faster than 
learning with the actual robot, and because of the 
complexities of drifting, mathematical models are 
difficult to formulate. It is essential that the 
simulation accurately reflect reality, since the 
physical robot will execute the rules or commands 
learned. 

At the core of the simulator is a physics 
simulation. The physics engine used is pyODE, a 
python implementation of the Open Dynamics 
Engine, an open source physics engine 
(http://pyode.sourceforge.net/). pyODE provides 
the functionality for the primary physics equations 
and integrators used in simulation. It also provides 
methods for collision detection and response. 
Using pyODE at its core we built a framework 
that allows for minimal understanding of the 
underlying system and ease of use. This allows for 
future work to focus solely on learning algorithms 
without spending time understanding or modifying 
the simulator. To achieve this, the existing code-
base was expanded, documented, and converted to 
an object oriented design. 

B. Implementation 
Previous work had been done with simulator and 



  

laid the foundation for our simulator 
implementation. The rendering, track structure and 
methods, and a basic simulation loop were 
completed. The simulation had to be hardcoded 
into individual files in order to execute different 
commands or use different tracks. We created a 
new class structure and strived to create an object 
oriented and well-documented simulator that 
would be easy to use. Classes with constructors, 
state information, accessor and mutator methods 
have been created and the code has been well 
documented allowing for quick understanding of 
what methods are available and the functionality 
they provide. In order to aid improvements that 
may need to be made to the simulator global 
constants are used rather than magic numbers. The 
pre-existing code base was also modified to abide 
by these standards. 

At the heart of the new design is the simulator 
class. This is the central class where the main 
simulation loop is executed. It allows for easy 
swapping between different tracks and sets of 
commands or command algorithms. In order to 
create a simulator, you simply specify the track 
and the command algorithm that you would like to 
use. To extend the functionality of the simulator 
several options, such as command or state logging, 
disabling rendering, and a few others may be 
specified.   

Since algorithms that generate commands are 
vital to future progress the simulator allows them 
to be easily swapped by passing in different 
instance of the driver class. The driver class issues 
commands, and is the only class that should 
require modification for different planning and 
control algorithms. During each iteration 
simulation loop the simulator asks the driver for a 
command, and the driver issues the command. In 
order to make a decision, the driver has access to 
information regarding the global state of the 
system via the track and local state of the car, 
using these 2 objects the entire state of the system 
is defined, and intelligent planning and control 
systems can be implemented.  

C. Car Movement 
One of the major design decisions of the 

simulator was how to simulate the movement of 
the car. Several options were considered until we 
decided that rotation the wheels to simulate linear 
acceleration and turning the wheels to provide 
turning was the best option. Below are methods 
considered for motion and their consequences: 

Perhaps the simplest method to simulate motion 
is to set the velocity of the car. This is allows for 
any state of the car to be easily manipulated. 
However setting speeds immediately is very 
unstable due to the way in which the simulation is 
integrated. By setting velocities, energy is added 
or taken away from the physics system. Since the 
system is based on physics equations that assume 
a conservation of energy, creating energy from 
nothing or destroying energy causes the equations 
to breakdown, and the simulation quickly 
degenerates. The same can be said for setting the 
orientation of the car instantly. Angular 
momentum follows similar laws as linear 
momentum, so instability quickly creeps in. 
Setting the orientation directly also fails to capture 
the physics of the drift and the interactions 
between the tires and the ground, which is the 
primary purpose of the simulation. 

Another idea was to apply force to the car. 
Unlike setting velocities, applying a force does not 
cause instabilities in the physics system. 
Application of force worked well for linear 
acceleration, but by applying forces to turn the car 
the interactions between the surface and the tires is 
not modeled, so the system does not capture 
reality. 

The method implemented, and the most 
reflective of reality is to have the tires move the 
car. Torques are applied to the tires and due to 
friction between the tire and the ground the car is 
propelled forward. Turning is achieved by turning 
the front tires, which consequently changes the 
orientation of the car. This system allows for 
intuitive use and manages to capture the physical 
properties of drifting. This also allows for actions 
to be more easily mapped to the actual robot itself. 
Actions learned in the simulator can be easily 
defined as ‘apply throttle’ and ‘turn the wheels’ 
and correspond directly to actions taken by the 
robot.  This allow for minimal translation between 



  

simulation and reality. 

D. Drifting 
The simulator has the ability to simulate drifting. 

This is achieved by using different friction 
coefficients for forces perpendicular to wheel 
rotation and forces parallel to rotation. Another 
key to simulating drift is setting different values of 
slip for the front and back tires. When the back 
tires can slip more easily drifting is easily 
achieved. We found that it was best to prevent the 
front tires from slipping at all, and allow the back 
to slip very easily. This is not entirely separate 
from reality, as the robot has rubber treads on the 
front tires, which provide a lot of grip, and the rear 
are smooth plastic which easily slip. Both of these 
conditions are applied during collision response in 
the simulator 

E. Interfacing with the Robot 
The robot can easily execute commands learned 

during simulation. As the simulation takes place, 
the commands being executed may be logged. 
These commands are saved to a text file and 
specify the throttle, direction (backward or 
forward) and the angle of the wheels. The 
commands are logged at the same pace as they are 
executed by the robot and allow the robot to parse 
the list as it runs. 

While running the robot can collect and log 
sensor data. This data is easily incorporated into 
the simulator via file readers and interpreters. Data 
from front sonar or line detectors can be easily 
converted to linear acceleration using methods we 
created. More recently data collected from the 
robot has grown more robust and allows for 
velocities to be more directly determined from 
odometry on the wheels.  

Both of these methods of interfacing with the 
robot are particularly useful when tuning 
simulation parameters to match reality. 

F. Approximating Reality 
The simulator must approximate reality in order 

to be useful.  The most basic implementation of 
this is to match the physical characteristics of the 
car in the simulation. The car is approximated by a 
box and 4-cylinders. The box has the same scale 

dimensions (length, width, height) of the body of 
the physical car. Each cylinder corresponds to a 
wheel and the dimensions of the wheels (radius, 
width) also match the physical car. Furthermore 
different grips between tires is approximated by 
applying more torque to the front tires than the 
back tires. Perpendicular grip is approximated by 
allowing the back tires to slip and not allowing the 
front tires to slip (as explained in the drift section). 

The acceleration of the car must match reality, 
and to achieve this, I use data collected from both 
the sensors on the robot and from the state of the 
car in simulation. Using gradient descent I adjust 
an acceleration parameter until the two data sets 
match to a specified degree of precision. This 
process begins by creating a set of commands, 
which easily can be captured by running the 
simulator and logging commands, or by manually 
coding commands in the correct format. Since the 
goal is to match linear acceleration, the commands 
consist of simply accelerating forward for 1 
second using different levels of throttle. The 
throttle was divided into ten levels, ranging from 
10 percent of throttle to 100 percent of throttle 
with 10 percent intervals separating each level. 
The result is 10 sets of commands each 1 second 
in length. 

The physical car executes these commands 
while it collects data. That data is stored and linear 
velocity is approximated using either the line 
detectors or the front sonar. For these experiments 
front sonar was the primary sensor used. The 
sensor data is converted to velocity over time, and 
is used as the data to fit by the simulator.  

The simulator then iteratively executes the same 
set of commands and adjusts, as a function of the 
error the parameter that controls linear 
acceleration. After many iterations the simulator 
matches the real data. This process is automated, 
and is implemented in the SimulatorAdjuster 
class. 

G. The “Flying Off” Problem 
Using the wheels to propel that car works well, 

but it presented a unique problem, the car tended 
to fly off the track.  This behavior began as a front 
wheelie and continued as the car flipped wildly 



  

through the air. 
The cause of this is most likely numerical error 

created by the large forces of friction between the 
tires and the surface. This friction is so great that 
the car gains upward momentum and then due to 
imprecise integration the error explodes. The 
problem can be eliminated by lowering either the 
tire or track friction. Lowering friction is not a 
solution and causes a serious problem. Friction is 
the force responsible for acceleration and less 
friction therefore causes less acceleration. To 
ensure this problem would not occur, the friction 
must be lowered to the point where the car 
accelerates much slower than reality. In fact it 
accelerates so slowly that the simulation becomes 
unusable. Another idea was to increase the weight 
of the car. Since more weight requires more force 
to push the car upward, increased weight reduced 
the 'flying off' effect but did not solve the 
problem. More weight suffers from the same 
disadvantages of decreased friction; more weight 
also causes the car to accelerate slower. To ensure 
the car would never 'fly off' the weight needed to 
be increased to the point where acceleration was 
so slow it rendered the simulation useless. 
Increased weight also caused a problem with 
collision response. The car would occasionally 
sink through the floor. This is a result of numerical 
error during the calculation of collision forces 
between the tires and the ground. 

 Another attempt at fixing this effect was to 
lower the center of mass of the car. This did 
indeed reduce the occurrence of the effect, and 
also reduced the occurrence of the car flipping 
while turning. When performing tight turns at high 
speeds the centrifugal force can cause the car to 
flip. This is an acceptable reaction, but the original 
car model flipped too frequently. To create a 
lower center of mass I simply flattened the body 
of the car and lowered it with respect to the 
wheels. 

 When watching the car 'fly off' the car would 
first do a wheelie and then go in the air. This 
seemed to indicate that the back tires are doing the 
majority of the gripping causing the 'flying off' 
effect to occur. To solve this I lowered the friction 
of the back tires. This didn't seem to help, even 

when turning off any torque to the back tires or 
removing all friction from the back tires the effect 
continued. Different grips are still used in the 
simulation, and as explained in the drifting 
section, are essential to accomplishing drift. 

 Another possible cause of the ‘flying off’ effect 
was that the tires were colliding with the car body 
and the simulator was therefore applying collision 
forces to prevent interpenetration. Since the 
wheels are connected to the body any penalty 
forces would affect the body of the car as well as 
the wheels. Penalty forces tend to be very strong, 
and can cause instabilities in simulation, 
especially when time steps are large. After 
preventing these collisions by modifying the 
collision response code the ‘flying off’ effect 
continues and we ruled this out as the cause. 

 After trying the solutions explained above I 
switched my attention away from the car model 
towards the global simulation. During simulation, 
integration is approximated using time steps. If 
time step steps become infinitely small the 
integration is exact, but the approximation 
becomes increasingly inaccurate as the size of the 
time steps increase. pyODE uses a semi-implicit 
integrator which is more sensitive to this problem 
that other integration methods. By decreasing the 
time step size I hoped to eliminate the problem. 
Unfortunately even with very small time steps the 
‘flying off’ effect continued. I believe that if time 
steps were small enough the flying off effect 
would not occur, but the simulation would become 
so slow that it would become unusable, and since 
the main purpose of the simulator is to train 
algorithms faster than the actual robot, speed is 
important and timesteps could not be reduced to 
an adequate size.  

 The last attempts prevent the car from moving 
in the y-direction. This can be achieved in two 
ways, pin the car the X-Z plane or sandwich the 
car in between two planes. Sandwiching the car 
between 2 planes is achieved by creating an 
invisible plane just above the car model. Any 
movement in the y-direction causes the car to 
collide with the overhead plane and therefore the 
movement will be stopped using collision forces. 
After implementing this, I found it to be just as 



  

buggy and problematic as the original 'flying off' 
problem. The collision forces can quickly spiral 
out of control as the car bounces between the two 
planes and due to numerical error it would 
eventually pop through one of the planes and the 
simulation would therefore be broken. 

 The final attempt and current solution is to pin 
the car to the X-Z plane. To achieve this I set any 
angular or linear velocity in the positive y-
direction to zero before integration occurs. I also 
set any forces pushing in the y-direction to 0. This 
solves the problem and the car can accelerate as 
fast as necessary. The car will sometimes still go 
in the y-direction, due to numerical error and 
collision response, but since acceleration and 
velocity is only stopped in the positive y-direction, 
the car quickly falls back to the ground. Also any 
motion in the y-direction tends to be fairly small, 
since the time steps are small. Pinning the car to 
the X-Z plane was the final solution to the ‘flying 
off’ effect and last component necessary to get the 
simulation in working order. 

H. Reinforcement Learning 
Since the main purpose of the simulator is for 

learning, particularly reinforcement learning, I 
created a rudimentary reinforcement learner. The 
learner works, and specifies how future teams 
might go about implementing a more robust, 
effective and efficient learner.  

The reinforcement learner uses discrete states 
that consist of a four-tuple: x-position, y position, 
orientation and speed. Actions are defined as a 
tuples, consisting of throttle and the wheel angle. 
The actions correspond to actions that can be sent 
to the actual robot. Since the simulation is 
deterministic, transition probabilities are always 1, 
and do not need to be estimated. Transitions are 
instead calculated using a parallel simulator that 
determines the state of the car after an action is 
made.  

The reinforcement learner uses the driver class 
to determine the best policy on the fly, so as the 
car moves around, the optimal path is determined 
based on its set of actions and learned state values. 
Rewards are always negative to encourage a 
speedy path to the goal. High penalties are given 

when the car drives off the edge, and the only 
positive reward is given at the goal state. 
Currently the goal state is just a position on the 
track, speed and orientation do not matter. 

One of the problems that I came across was that 
because the transition probabilities are 
deterministic exploration was limited. Once a 
working path was found the car would stick to it 
and the learning would become stagnant. In order 
to encourage more exploration of the state space I 
added a random element, by causes a random 
action to occasionally occur. 

IV. ALGORITHMIC APPROACH 
A. Apprenticeship Learning 
Initially, our approach was to mix a closed-loop 

straightening controller with open-loop controllers 
for the turns.  What ended up happening was that 
the open-loop controller would give non-
deterministic results, even on a 1000 Hz 
controller. We attribute this to the wild 
fluctuations in battery level observed in the linear 
and angular velocities from run to run, as well as 
probably the unevenness of the carpet surface.  So, 
we upgraded our hardware to allow for a closed-
loop turn controller. The most reliable way we 
found to do this, after much experimentation, is to 
run a large number of open-loop trials with the 
same controller, and observe their behavior.  
Specifically, for a 90-degree right turn, we aim to 
perform the drift by turning the wheels right and 
setting the throttle high to initiate the drift and 
then reversing the wheels and killing the throttle to 
stop the drift.  What we measured was the amount 
of time and angle covered by the spinning car 
when the throttle is killed and the wheels are 
reversed at different angular velocities.  All of the 
trials of the same open-loop controller behave 
mostly the same way, so we can informally 
control for other factors – all except for the entry 
speed into the turn, which we had to break the 
policies into regimes for. 

The relationship between angular velocity and 
stopping time is shown below for one linear 
velocity region.  The relationship seemed linear to 
us, so we applied linear regression.   



  

 
Since we applied different regressions to 

different regions of the data, we are performing 
local regression.  If we hard-code a controller that 
estimates how far it will turn if it were to stop at 
each timestep, we can perform turns with low 
error (see our video, in which four turns are linked 
without straightening). Another approach we 
could use is to keep track of the number of degrees 
turned each time, and for a box-like course, we 
could then correct for error in a previous turn by 
setting a different target for the next one. 

B. Straightening Controller 
We created a very basic PID closed-loop 

straightening controller, using only sonar. This 
was meant to take control of the car between turns.  
Since turning proved so difficult, we spent most of 
our time working on it, rather than the 
straightening controller – which would have been 
a matter of applying known techniques and tuning 
them. For example, we could have written a 
Kalman filter for the car’s angle with respect to 
the side wall, as measured by sonar, gyro and 
using the below control responses. 

C. Data 
We did several successful experiments in 

measuring the behavior of the car.  Below is the 
angular turning rate at different wheel angles in a 
non-slipping regime.  This was used in the closed 
controller for straightening (reducing angle error 
to zero) and could be applied to a Kalman filter for 
angle or position. 

 
We also measured the amount of energy 

required to drift by doing an experiment where we 
drive the car directly forward, and then turn with 
no throttle.  It is not practical to drive the car on a 
course this way because it is too fast and 
uncontrollable, but it shows the energy threshold 
for drifting quite clearly. 

 
When we gained access to data at a very good 

update rate, we were able to get much better idea 
of the physics of a drifting turn.  During this time, 
we were using a strategy of turning the wheels, 
applying a throttle to spin the car, and then 
reversing the wheels to stop the drift.  We hoped 
to determine the time required to go from any 
angular velocity to an angular velocity of zero. 
Thus creating a controller that calculates when to 
stop the car during a 90-degree turn based on the 
current angle and angular velocity. 

 



  

V. EXTENSIONS 
A. Improved Odometry and Sensing 
Of the papers we surveyed, our robot was the 

weakest in terms of odometry.  All others used 
GPS, often with high precision, to gain access to 
absolute position data. In our case, GPS would 
have greatly simplified the sensing problem.  
Additionally we could have used a greater degree 
of environmental specification or algorithm 
sophistication to get a similar result. For example, 
we could have implemented a particle filter 
(although it would not be easy because of the 
degree of isometry in our testing environment) or 
a Kalman filter that integrated knowledge of 
control response. There are probably other 
techniques that could be implemented as well, but 
any of them could have contributed to a more 
sophisticated apprenticeship learning approach (as 
in [4]) or used to train the simulator (as in [1]). 

Odometry also limited our approaches to more 
sophisticated turning problems; for example, a 
slowly-curving turn would be difficult to run in 
our current setup because we would not be able to 
detect when the turn began, as we would need to 
see some wall perpendicular to our current 
heading to detect the onset of a turn. 

These problems could also be addressed with 
improved sensing, with lasers for a high-power 
solution, or perhaps even a single camera. Sonar, 
in our current setup, suffers from large spikes – 
which have to be filtered out, causing a delay in 
threshold detection. Sonar also has a relatively low 
max range, around 3.5 meters. These two 
problems, compounded with a low instruction rate 
(see below), make it difficult to drive quickly and 
make quick decisions.  

B. Robustness 
We encountered several problems of robustness 

in our approach. One problem was the battery. We 
tried to avoid modeling to the battery because of 
the lack of interesting results to be observed in 
that area. We used results that were battery 
independent, and also used the operation on a 
full battery as the canonical battery level. As 
detailed in the battery section this had several 
undesirable consequences. There were differences 

in the degradation of our batteries as well. This 
made some theoretical methods more difficult to 
apply, and it also meant that the compromises we 
made because of the battery (a fair degree of hand 
tuning) made our open- and closed-loop 
controllers less robust.  

Another area of difficulty was the slow 
instruction update rate (10 Hz). Most drift turns 
take less than a second, with the crucial 
information of when to stop the drift and let the 
car slide requiring high precision. Our slow update 
rate made adding a closed-loop component to our 
drift controller difficult because of the large 
amount of error incurred as a result of a bad 
reading or dropped packet.  In order to eliminate 
this problem, we built software to run instructions 
at 1000 Hz on the microcontroller and send data 
back at 200 Hz. 

C. True Expert Driver 
Our ideal runs were performed through the 

keyboard controller by our team, none of which 
had experience drifting remote control cars. It 
would be interesting to see how someone who is a 
true expert could drive to minimize the error of the 
open-loop components. For example, we did little 
throttle management during the turn. It’s possible 
that better control actions could allow for more 
error in input error. 

D. Transitioning Between Open and Closed 
Loop Controllers 
We took a very simplistic approach to 

transitioning between open- and closed-loop 
controllers – some kind of odometry condition 
usually. [4] presents an interesting method of 
probabilistic transitioning between open- and 
closed-loop controllers. 

VI. CONCLUSION 
We had to make many compromises in 

approaching our goals for the project, but we still 
believe that many of the problems we encounter 
are solvable. Our project is difficult in several of 
the main areas of robotics, but particularly, we did 
not expect the degree of the problems we 
encountered in sensing and communication. We 
were also building the platform as we went, which 



  

was quite time-consuming. Although we invested 
a very large amount of time on the project during 
the semester, it wasn’t until the end where we 
thought we might have some chance of solving the 
problem satisfactorily (due to the wheel encoder 
and gyroscope – new sensors, and the improved 
communication method). 
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